
A Review on Comparative Analysis of Block Matching Algorithm

A.J. Tankariya, Jaikarn Singh and Mukesh Tiwari
Department of Electronics and Communication Engineering, SSSIST, Sehore, (MP)

(Received 11 October, 2011, Accepted 14 November, 2011)

ABSTRACT : This paper is a review of the block matching algorithms used for motion estimation in video
compression. It implements and compares 7 different types of block matching algorithms that range from the very
basic Exhaustive Search to the recent fast adaptive algorithms like Adaptive Rood Pattern Search. The algorithms
that are evaluated in this paper are widely accepted by the video compressing community and have been used in
implementing various standards, ranging from MPEG1 / H.261 to MPEG4 / H.263. The paper also presents a very
brief introduction to the entire flow of video compression.

Keywords: Block matching, motion estimation, video compression, MPEG.

I. INTRODUCTION

Video has huge redundant information which must be
exploited to be stored and transmitted efficiently. The
common technique to achieve this goal is known as motion
estimation. In this technique, the current frame is predicted
from a previous frame known as reference frame by using
motion vectors. With the increasing demand of multimedia
applications, considerable efforts are needed for efficient
video compressing and encoding algorithms. Motion
estimation has proven to be an effective technique for
exploiting the temporal redundancy in video sequences and
is therefore an essential part of MPEG and H.263
compression standards. Since motion estimation is the most
computationally intensive portion of video encoding,
efficient fast motion estimation algorithms are highly desired
for video compressors subject to diverse requirement on
bit rate, video sequence characteristics and delay.
Knowledge of the motion is not available from a video data
and must be deduced using computationally intensive
algorithms. For efficient handling of motions with variety
of contents, the need for adaptive motion estimation
methods is inevitable. Digital video is widely used and plays
an import role in modern society, such as digital
entertainments, video conference, and video surveillance.
However, the huge size of media data is the major obstacle
for efficient video storage and communication.  n order to
compress the video signals, many international standards
are developed, namely the ISO/IEC MPEG-x series [1], and
the ITU-T H.26x series.

Fig. 1. Video compression process flow.

The basic flow of the entire compression-
decompression process is depicted in Fig. 1. This includes
the motion estimation (ME) and motion compensation (MC).
The hybrid video encoder can be divided into the forward
and backward paths. In the forward path, estimates the
motion in the current frame with respect to a previous frame.
A motion compensated image for the current frame is then
created that is built of blocks of image from the previous
frame. Here for each macro block (MB), motion estimation
(ME) is firstly conducted to find the best matching position.
Then the motion compensation (MC) is scheduled to

generate the matching reference block. Thirdly, the
original MB is subtracted by the reference block to get the
residuals Dn. Fourthly, the obtained residuals are
transformed (T) and quantized (Q), and the calculated
coefficients are encoded by the variable length code (VLC)
and ready for transmission. In the backward path, the
generated coefficients are firstly inverse quantized (Q-1) and
inverse transformed (T-1) to get the reconstructed residuals
D`n, which is then added with the reference block obtained
by MC to generate the reconstruct MB, which will be used
for future ME process.

International Journal on Emerging Technologies 2(2): 96-101(2011)
et ISSN No. (Print) : 0975-8364

ISSN No. (Online) : 2249-3255

pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com



Tankariya, Singh and Tiwari 97

The whole idea behind motion estimation based video
compression is to save on bits by sending JPEG encoded
difference images which inherently have less energy and
can be highly compressed as compared to sending a full
frame that is JPEG encoded. Motion JPEG, Where all frames
are JPEG encoded, achieves anything between 10 : 1 to
15 : 1 compression ratio, where as MPEG can achieve a
compression ratio of 30:1 and is also useful at 100 : 1 ratio
[1] [2] [3]. It should be noted that the first frame is always
sent full, and so are some other frames that might occur at
some regular interval (like every 6th frame). The standards
do not specify this and it might change with every video
being sent based on the dynamics of the video.

The most computationally expensive and resource
hungry operation in the entire compression process is
motion estimation. Hence, this field has seen the highest
activity and research interest in the past two decades. This
paper implements and evaluates the fundamental block
matching algorithms from the mid-1980s up to the recent
fast block matching algorithms. It also presents a literature
review of few papers from the last 3 years.

II. MOTION ESTIMATION ALGORITHMS

This section comprehensively presents a block-based
algorithm for motion estimation. The below supposition
behind motion estimation is that the patterns corresponding
to objects and background in a frame of video sequence
move within the frame to form corresponding objects on
the subsequent frame.

Fig. 2. Block matching a macro block of side 16 pixels and a
search parameter p of size 7 pixels.

The idea behind block matching is to divide the current
frame into a matrix of 'macro blocks' that are then compared
with corresponding block and its adjacent neighbors in the
previous frame to create a vector that stipulates the
movement of a macro block from one location to another in
the previous frame. This movement calculated for all the
macro blocks comprising a frame, constitutes the motion
estimated in the current frame. The search area for a good
macro block match is constrained up to p pixels on all fours
sides of the corresponding macro block in previous frame.
This 'p' is called as the search parameter. Larger motions
require a larger p and the larger the search parameter the
more computationally expensive the process of motion
estimation becomes. Usually the macro block is taken as a

square of side 16 pixels, and the search parameter p is 7
pixels. The idea is represented in Fig 2.

The matching of one macro block with another is based
on the output of a cost function. The macro block that
results in the least cost is the one that matches the closest
to current block. There are various cost functions, of which
the most popular and less computationally expensive is
Mean Absolute Difference (MAD) given by equation (i).
Another cost function is Mean Squared Error (MSE) given
by equation (ii).

1 1

2
0 0

1
| |

N N

ij ij
i j

MAD C R
N

 

 
             ... (i)

1 1
2

2
0 0

1
( )

N N

ij ij
i j

MAD C R
N

 

 

           ... (ii)

where N is the side of the macro bock, C
ij
 and R

ij
 are

the pixels being compared in current macro block and
reference macro block, respectively.

Other than above the SAD criterion is often used as
the criterion for choosing the best-matching block in the
reference frame due to its simplicity and good performance
given as below.

1 1

,
0 0

( , ; , ) | ( , ) ( , ) |
M N

ij i u j v
k i

SAD k l u v B k l B k l
 

 
 

  
where, B

i,j
 (k, l), represents the (k, l)th pixel of a

16 × 16 macro block from the current picture at the spatial
location (i, j).  And next B

i�u, j�v(k, l) represents the (k, l)th

pixel of a candidate macro block from a reference picture at
the spatial location (i, j) displaced by the vector (u, v).

Peak-Signal-to-Noise-Ratio (PSNR) given by equation
(iii) characterizes the motion compensated image that is
created by using motion vectors and macro clocks from
the reference frame.

2

10
(Peak to peak value of original data)

10logPSNR
MSE

 
  

 
... (iii)

A. Full Search (FS)

This algorithm, also known as Exhaustive Search, it is
one of the classical algorithms for block-based motion
compensation. It is the most computationally expensive
block matching algorithm of all. This algorithm calculates
the cost function at each possible location in the search
window. As a result of which it finds the best possible
match and gives the highest PSNR amongst any block
matching algorithm. Fast block matching algorithms try to
achieve the same PSNR doing as little computation as
possible. The obvious disadvantage to ES is that the larger
the search window gets the more computations it requires.
Its plus point is high accuracy for block motion estimation
and small number of index MVs for represent the



98 Tankariya, Singh and Tiwari

reconstruction image (only one MV represent for the whole
block). Its negetive point is high computational time (slow)
and a lot of image detail may be lost because it represent
by block.

B. Three Step Search (TSS)

This is one of the earliest attempts at fast block
matching algorithms and dates back to mid 1980s. It uses a
three step search procedure to determine MV estimation.
The algorithm is known as TSS algorithm and it is used for
displacement computation up to 7 pels/frame.

The search procedure for this algorithm is described
as follows: where in the first step, 9 checking points
centered at the origin of the search window are first
searched with a step size of. The check point with the
minimum cost function value is selected as the centre point
for the second step. In the second step, Another 8 checking
points surrounding the new centre with half the previous
step size are checked. Again, the check point with the
minimum cost function value is selected as the centre point
for the third step. In this last third step of the procedure,
the step size is again halved. 8 more checking points
surrounding the new centre is checked. The MV is given
by the position of the point that gives the minimum cost
function value in this stage.

Fig. 3. Three Step Search procedure.

C. New Three Step Search (NTSS)

Rather than using the uniform distribution as being
used in TSS algorithm, which becomes inefficient for small
motion estimation, NTSS algorithm emphasis on the use of
centre-biased MV distribution, which is one of real world
image sequence's characteristics. The search procedure for
NTSS [4] differs from TSS by firstly, employing a centre-
biased checking point pattern in its first step and secondly,
incorporating a halfway-stop technique for stationary or
quasi-stationary blocks. It was one of the first widely
accepted fast algorithms and frequently used for
implementing earlier standards like MPEG 1 and H.261.

The TSS uses a uniformly allocated checking pattern
for motion detection and is prone to missing small motions.
The NTSS process is illustrated graphically in Fig 4. In the
first step 16 points are checked in addition to the search

origin for lowest weight using a cost function. Of these
additional search locations, 8 are a distance of S = 4 away
(similar to TSS) and the other 8 are at S = 1 away from the
search origin. If the lowest cost is at the origin then the
search is stopped right here and the motion vector is set
as (0, 0). If the lowest weight is at any one of the 8 locations
at S = 1, then we change the origin of the search to that
point and check for weights adjacent to it. Depending on
which point it is we might end up checking 5 points or 3
points. The location that gives the lowest weight is the
closest match and motion vector is set to that location. On
the other hand if the lowest weight after the first step was
one of the 8 locations at S = 4, then we follow the normal
TSS procedure.

Hence although this process might need a minimum of
17 points to check every macro block, it also has the worst-
case scenario of 33 locations to check.  Its plus point is
less computational time on block position than FS and static
pattern of searching point (not complexity). Its negetive
point is, Allocation of the check point at the first stage
leaves several gaps which becomes inefficient small motion
estimation. It can be reduced by using smaller block size
but may increase searching time and space for motion index.

Fig. 4. New Three Step Search block matching.

D. Simple and Efficient Search (SES)

SES [5] is another extension to TSS and exploits the
assumption of unimodal error surface. The main idea behind
the algorithm is that for a unimodal surface there cannot
be two minimums in opposite directions and hence the 8
point fixed pattern search of TSS can be changed to
incorporate this and save on computations.

The algorithm still has three steps like TSS, but the
innovation is that each step has further two phases. The
search area is divided into four quadrants and the algorithm
checks three locations A, B and C as shown in Fig. 5.  A is
at the origin and B and C are S = 4 locations away from A
in orthogonal directions.



Tankariya, Singh and Tiwari 99

Fig. 5. Search patterns corresponding to each selected quadrant:
(a) Shows all quadrants (b) quadrant I is selected (c) quadrant II
is selected (d) quadrant III is selected (e) quadrant IV is selected.

Depending on certain weight distribution amongst the
three the second phase selects few additional points (Fig

5). The rules for determining a search quadrant for
seconds phase are as follows:

Select (b): If MAD(A) > MAD(B) and MAD(A) >
MAD(C)

Select (c): If MAD(A) > MAD(B) and MAD(A) <
MAD(C)

Select (d): If MAD(A) < MAD(B) and MAD(A) <
MAD(C)

Select (e): If MAD(A) < MAD(B) and MAD(A) >
MAD(C)

Fig. 6. The SES procedure.

Once we have selected the points to check for in
second phase, we find the location with the lowest weight
and set it as the origin. We then change the step size
similar to TSS and repeat the above SES procedure again
until we reach S = 1. The location with the lowest weight
is then noted down in terms of motion vectors and
transmitted. An example process is illustrated in Fig. 6.

E. Four Step Search (4SS)

Similar to NTSS, 4SS [6] also employs center biased
searching and has a halfway stop provision. 4SS sets a
fixed pattern size of S = 2 for the first step, no matter what
the search parameter p value is. Thus it looks at 9 locations
in a 5 × 5 window. If the least weight is found at the center

of search window the search jumps to fourth step. If the
least weight is at one of the eight locations except the
center, then we make it the search origin and move to the
second step. The search window is still maintained as
5 × 5 pixels wide. Depending on where the least weight
location was, we might end up checking weights at 3
locations or 5 locations. The patterns are shown in Fig. 7.
Once again if the least weight location is at the center of
the 5 × 5 search window we jump to fourth step or else we
move on to third step. The third is exactly the same as the
second step. In the fourth step the window size is dropped
to 3 × 3, i.e. S = 1. The location with the least weight is
the best matching macro block and the motion vector is
set to point o that location. A sample procedure is shown
in Fig. 7. This search algorithm has the best case of 17
checking points and worst case of 27 checking points.

Fig. 7. Four Step Search procedure.

F. Diamond Search (DS)

DS [7] algorithm is exactly the same as 4SS, but the
search point pattern is changed from a square to a diamond,
and there is no limit on the number of steps that the
algorithm can take. DS uses two different types of fixed
patterns, one is Large Diamond Search Pattern (LDSP) and
the other is Small Diamond Search Pattern (SDSP). These
two patterns and the DS procedure are illustrated in Fig. 8.

Just like in FSS, the first step uses LDSP and if the
least weight is at the center location we jump to fourth
step. The consequent steps, except the last step, are also
similar and use LDSP, but the number of points where cost
function is checked are either 3 or 5 and are illustrated in
second and third steps of procedure shown in Fig.8. The
last step uses SDSP around the new search origin and the
location with the least weight is the best match. As the
search pattern is neither too small nor too big and the fact
that there is no limit to the number of steps, this algorithm
can find global minimum very accurately. The end result
should see a PSNR close to that of ES while computational
expense should be significantly less.



100 Tankariya, Singh and Tiwari

Fig. 8. Diamond Search procedure.

G. Adaptive Rood Pattern Search (ARPS)

ARPS [8] algorithm makes use of the fact that the
general motion in a frame is usually coherent, i.e. if the
macro blocks around the current macro block moved in a
particular direction then there is a high probability that the
current macro block will also have a similar motion vector.
This algorithm uses the motion vector of the macro block
to its immediate left to predict its own motion vector. An
example is shown in Fig. 9. The predicted motion vector
points to (3, �2). In addition to checking the location
pointed by the predicted motion vector, it also checks at a
rood pattern distributed points, as shown in Fig. 9, where
they are at a step size of S = Max (|X|, |Y|). X and Y are the
x-coordinate and y-coordinate of the predicted motion
vector.

Fig 9. Adaptive Rood Pattern Search.

 This rood pattern search is always the first step. It
directly puts the search in an area where there is a high
probability of finding a good matching block. The point
that has the least weight becomes the origin for subsequent
search steps, and the search pattern is changed to SDSP.
The procedure keeps on doing SDSP until least weighted
point is found to be at the center of the SDSP. A further
small improvement in the algorithm can be to check for
Zero Motion Prejudgment [8], using which the search is
stopped half way if the least weighted point is already at
the center of the rood pattern.

The main advantage of this algorithm over DS is if the
predicted motion vector is (0, 0), it does not waste
computational time in doing LDSP, it rather directly starts
using SDSP. Furthermore, if the predicted motion vector is
far away from the center, then again ARPS save on
computations by directly jumping to that vicinity and using
SDSP, whereas DS takes its time doing LDSP. Care has to

be taken to not repeat the computations at points that were
checked earlier. Care also needs to be taken when the
predicted motion vector turns our to match one of the rood
pattern location. We have to avoid double computation at
that point. For macro blocks in the first column of the frame,
rood pattern step size is fixed at 2 pixels.

Fig. 10. Search points per macro block while computing the
PSNR performance of Fast Block Matching Algorithms.

Fig. 11. PSNR performance of Fast Block Matching Algorithms.
Caltrain Sequence was used with a frame distance of 2.

III. OTHER RECENT ALGORITHMS

DS proved to be best block matching algorithm of the
last century. Every new algorithm in the new millennia is
an improvement on the results of DS. Cross Diamond Search
(CDS) [9], Small Cross Diamond Search (SCDS) [10] and
New Cross Diamond Search (NCDS) [11], all improve on
the performance of DS by modifying the starting search
pattern from LDSP to cross search pattern (CSP). Amongst
themselves these three algorithms differ with respect to the
number of points being used out of the CSP. CDS uses all
the 9 points whereas SCDS and NCDS use only the inner 5
points to start and then expand their search. However,
analogous to the NTSS that eventually ends up doing
similar calculations like TSS, these CSP based variants end
up going the DS way. Another reason for their improvement
over DS is the provision of multiple half-step stops. It
should be mentioned that out of the three CSP based
variants only NCDS comes closer to the performance of
ARPS. The others although an improvement on DS, do not
match the performance of ARPS.

IV. SUMMARY

The past two decades have seen the growth of wide
acceptance of multimedia. Video compression plays an
important role in archival of entertainment based video
(CD/DVD) as well as real-time reconnaissance/video



Tankariya, Singh and Tiwari 101

conferencing applications. While ISO MPEG sets the
standard for the former types of application, ITU sets the
standards for latter low bit rate applications. In the entire
motion based video compression process motion estimation
is the most computationally expensive and time-consuming
process. The research in the past decade has focused on
reducing both of these side effects of motion estimation.

Block matching techniques are the most popular and
efficient of the various motion estimation techniques. This
paper first describes the motion compensation based video
compression in brief. It then illustrates and simulates 7 of
the most popular block matching algorithms, with their
comparative study at the end. Three more, very recent, block
matching algorithms are studied in the end as part of
literature review. Of the various algorithms studied or
simulated during the course of this final project ARPS turns
out to be the best block matching algorithm.

REFERENCES
[1] S. Nomura, K. Yamanaka, O. Katai, H. Kawakami, and T.

Shiose, "Anovel adaptive morphological approach for
degraded character imagesegmentation," Pattern
Recognition, pp. 1961-1975, (2005).

[1] Borko Furht, Joshua Greenberg, Raymond Westwater,
Motion Estimation Algorithms For Video Compression.
Massachusetts: Kluwer Academic Publishers, Ch. 2 and 3,
(1997).

[2] M. Ghanbari, Video Coding, An Introduction to Standard
Codecs, London: The Institute of Electrical Engineers, Ch.
2, 5, 6, 7 and 8, (1999).

[3] Iain E.G. Richardson, Video Codec Design, West Sussex:
John Wiley & Sons Ltd., Ch. 4, 5 and 6, (2002).

[4] Renxiang Li, Bing Zeng, and Ming L. Liou, "A New Three-
Step Search Algorithm for Block Motion Estimation", IEEE
Trans. Circuits And Systems For Video Technology, vol 4,
no. 4, pp. 438-442, August (1994).

[5] Jianhua Lu, and Ming L. Liou, "A Simple and Efficient
Search Algorithm for Block-Matching Motion Estimation",
IEEE Trans. Circuits And Systems For Video Technology,
vol 7 , no. 2, pp. 429-433, April (1997).

[6] Lai-Man Po, and Wing-Chung Ma, "A Novel Four-Step
Search Algorithm for Fast Block Motion Estimation", IEEE
Trans. Circuits And Systems For Video Technology, vol 6,
no. 3, pp. 313-317, June (1996).

[7] Shan Zhu, and Kai-Kuang Ma, " A New Diamond Search
Algorithm for Fast Block-Matching Motion Estimation",
IEEE Trans. Image Processing, vol 9, no. 2, pp. 287-290,
February (2000).

[8] Yao Nie, and Kai-Kuang Ma, "Adaptive Rood Pattern
Search for Fast Block-Matching Motion Estimation", IEEE
Trans. Image Processing, vol 11 , no. 12, pp. 1442-1448,
December (2002).

[9] Chun-Ho Cheung, and Lai-Man Po, "A Novel Small Cross-
Diamond Search Algorithm for Fast Video Coding and Video
Conferencing Applications", Proc. IEEE ICIP, September
(2002).

[10] Chun-Ho Cheung, and Lai-Man Po, "A Novel Cross-
Diamond Search Algorithm for Fast Block Motion
Estimation", IEEE Trans. Circuits And Systems For Video
Technology, vol 12 , no. 12 , pp. 1168-1177, December
(2002).

[11] C.W. Lam, L.M. Po and C.H. Cheung, "A New Cross-
Diamond Search Algorithm for Fast Block Matching Motion
Estimation", Proceeding of (2003) IEEE International
Conference on Neural Networks and Signal Processing ,
pp. 1262-1265, Dec. (2003), Nanjing, China.


